L1-minimization methods for Hamilton-Jacobi equations: the one-dimensional case

نویسندگان

  • Jean-Luc Guermond
  • Bojan Popov
چکیده

A new approximation technique based on L1-minimization is introduced. It is proven that the approximate solution converges to the viscosity solution in the case of one-dimensional stationary Hamilton–Jacobi equation with convex Hamiltonian. Mathematics Subject Classification (2000) 65N35 · 65N22 · 65F05 · 35J05

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Sparse Operators

[1] J.-L. Guermond and B. Popov, Linear advection with ill-posed boundary conditions via L1-minimization, Numerical Analysis and Modeling 4 (2007), 39–47. [2] J.-L. Guermond and B. Popov, L1-minimization methods for Hamilton-Jacobi equations: the one-dimensional case, submitted. [3] J.-L. Guermond and B. Popov, L1-approximation of stationary Hamilton-Jacobi equations, submitted. [4] J.-L. Guerm...

متن کامل

L-minimization Methods for Hamilton-jacobi Equations: the One-dimensional Case

The goal of the present paper is to investigate the approximation properties of a new class of L-minimization techniques for approximating stationary HamiltonJacobi equations in one space dimension. Most approximation algorithms of Hamilton-Jacobi equations are based on monotonicity and Lax-Friedrichs approximate Hamiltonians, see e.g. Kao, Osher, and Tsai [13]. Monotonicity is very often invok...

متن کامل

An adaptive high-order discontinuous Galerkin method with error control for the Hamilton-Jacobi equations. Part I: The one-dimensional steady state case

We propose and study an adaptive version of the discontinuous Galerkin method for Hamilton–Jacobi equations. It works as follows. Given the tolerance and the degree of the polynomial of the approximate solution, the adaptive algorithm finds a mesh on which the approximate solution has an L1-distance to the viscosity solution no bigger than the prescribed tolerance. The algorithm uses three main...

متن کامل

An Optimal L-minimization Algorithm for Stationary Hamilton-jacobi Equations

We describe an algorithm for solving steady Hamilton-Jacobi equations in dimension one using a L-minimization technique on piecewise linear approximations. The algorithm is proved to have optimal complexity and to give approximations that converge to the viscosity solution of the problem. Numerical results are presented to illustrate the performance of the method.

متن کامل

L1-Stability and error estimates for approximate Hamilton-Jacobi solutions

We study theL1-stability and error estimates of general approximate solutions for the Cauchy problem associated with multidimensional Hamilton-Jacobi (H-J) equations. For strictly convex Hamiltonians, we obtain a priori error estimates in terms of the truncation errors and the initial perturbation errors. We then demonstrate this general theory for two types of approximations: approximate solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2008